Questions on Work & Energy - Mark Scheme

1. Any suitable example of something strained (eg: stretched elastic band)

B1 [1]

[7]

2. (a) (i) (one of the) force \times perpendicular distance between the forces B1

(ii) torque =
$$1200 \times 0.4$$
 C1
= 480 Nm

[allow one mark for $1200 \times 0.2 = 240 \text{ (N m)}$]

(b) (i) work = force \times distance (moved) B1

 $= 2 \times 1200 \times 2 \times \pi \times 0.2$ B1

=3016 (J) A0

(ii) power = work done / time C1

= 3000 / (1/40)

 $=1.2 \times 10^5 \, (W)$ A1

3. (a) One reading from the graph e.g. 1.0 N causes 7 mm

Hence 5.0 (N) causes 35 ± 0.5 (mm) A1 (allow one mark for 35 ± 1 (mm)

(b) (i) Force on each spring is 2.5 (N)

extension = 17.5 (mm) allow 18 (mm) or reading from graph
[allow ecf from (a)]

A1

(ii) strain energy = area under graph $/ \frac{1}{2} F \times e$

 $= 2 \times 0.5 \times 2.5 \times 17.5 \times 10^{-3}$ = 0.044 (I)

= 0.044 (J) [allow ecf from (b)(i)]

(c) E = stress / strain C1

Stress = force / area and strain = extension / length

extension = $(F \times L) / (A \times E)$ = $(5 \times 0.4) / (2 \times 10^{-7} \times 2 \times 10^{11})$ = $5.(0) \times 10^{-5}$ (m) A1

	(d)	strain <u>energy</u> is larger in the spring extension is (very much larger) (for the same force) for the spring		B1	
				B1	[11]
4.	(a)	(i)	speed = d / t	C1	
			= 24 / 55		
			$= 0.436 \text{ (m s}^{-1}) \text{ allow } 0.44$ $do \text{ not allow one sf}$	A1	
		(ii)	kinetic energy = $\frac{1}{2}$ m v ²	C1	
			$= 0.5 \times 20 \times (0.436)^2$		
			= 1.9 (J) note ecf from (a)(i)	A1	
		(iii)	potential energy = mg h	C1	
			$=20\times9.8\times4$		
			= 784 (J)	A1	
			penalise the use of $g = 10$		
	(b)	(i)	power = energy / time or work done / time	C1	
			$= (15 \times 784) / 55$		
			note ecf from (a)(iii)		
			= 214 (W)	A1	
		(ii)	needs to supply children with kinetic energy	B1	
			air resistance friction in the bearings of the rollers / belt	B1 B1	
			total mass of children gives an average mass of greater than 20 kg Max B2	B1	
			22		[10]
5.	Energy cannot be created or destroyed; it can only be transferred/transformed into other forms				
	or The (total) energy of a system remains constant or				
	(total) initial energy = (total) final energy (AW)				
	Allow: 'Energy cannot be created / destroyed / lost'				

PhysicsAndMathsTutor.com

[1]

B1

6. (i) Density = mass / volume

Area × length = mass / density

$$Area = (2.0 \times 10^{-3}) / (7800 \times 0.5) \text{ or } 2.56 \times 10^{-7} / 0.5$$

$$= 5.1(3) \times 10^{-7} \text{ m}^2$$
A0

(ii) $E = (F \times I) / (A \times e) / \text{ stress} = F / A (1.6 \times 10^8 \text{ and strain})$

$$= e / 1 (8 \times 10^{-4})$$

$$= (2 \times 10^{-11} \times 5.1 \times 10^{-7} \times 4.0 \times 10^{-4}) / 0.5$$

$$= 82 \text{ (N) (81.6)}$$
C1

(iii) Diameter for D is half G hence area is ½ of G Extension is $4 \times \text{ greater}$ Tension required is the same = 82 (N)

(iv) The extension is proportional to the force / Hooke's law (OWTE)

8. (i)
$$E_p = mgh \text{ and } E_k = \frac{1}{2}mv^2 \text{ (Allow } \Delta h \text{ for } h)$$

Not: $E_k = mgh$

[8]

(ii)
$$mgh = \frac{1}{2}mv^2$$

B1

$$v^2 = 2gh \text{ or } v = \sqrt{2gh}$$

B1

[3]

9. (i)
$$m = \rho V$$

Allow any subject for the density equation

C1

$$m = 1.0 \times 10^3 \times (1.2 \times 10^{-2} \times 2.0 \times 10^7)$$

C1

mass of water =
$$2.4 \times 10^8$$
 (kg)

A0

(ii) loss in potential energy =
$$2.4 \times 10^8 \times 9.81 \times 2.5 \times 10^3$$

Allow 1 mark for '5.89 × 10^{12} (J)

C1

30% of GPE =
$$0.3 \times 5.89 \times 10^{12}$$
 (= 1.77×10^{12})

C1

Allow 2 marks for '1.77 ×
$$10^{12}$$
 (J)'

~ _

power =
$$1.9(63) \times 10^9$$
 (W) (≈ 2 GW)

power = $\frac{1.77 \times 10^{12}}{900}$

C1

Note:
$$\frac{5.89 \times 10^{12}}{900}$$
 (= 6.5 GW) scores 2 marks

A0

B1

(iii) Any correct suitable suggestion; eg: the energy supply is not constant/ cannot capture all the rain water / large area (for collection)

Note: Do not allow reference to 'inefficiency' / 'cost'

[6]

10. (a) The graph shows length and not extension of the spring / spring has original length (of 2.0 cm) (AW)

Allow: 'length cannot be zero'

B1

(b) Straight line (graph) / linear graph / force ∝ extension / constant

gradient (graph)

Not 'force ∝ *length*'

B1

(c) force constant = $\frac{2.0}{0.04}$

Note: The mark is for any correct substitution

C1

force constant = $50 \text{ (N m}^{-1})$

Allow: 1 mark for 0.5 (N m⁻¹) – 10^{n} error **Allow** 1 mark for $5/12 \times 10^{-2} = 41.7$ or $4/10 \times 10^{-2} = 40$ or $3/8 \times 10^{-2} = 37.5$ or $2/6 \times 10^{-2} = 33.3$ or $1/4 \times 10^{-2} = 25$

A1

(d) work done = $\frac{1}{2}Fx$ or $\frac{1}{2}kx^2$ or 'area under graph'

C1

work done =
$$\frac{1}{2} \times 3.0 \times 0.06$$
 or $\frac{1}{2} \times 50 \times 0.06^2$

Possible ecf

work done = 0.09 (J)

Note: 1 sf answer is allowed

A1

(e) Find the gradient / slope (of the tangent / graph)

B1

B1

Maximum speed at 1.0s / 3.0s / 5.0s / steepest 'part' of graph / displacement = 0

Allow: 2 marks for 'steepest / maximum gradient'

[8]